Uygulamalı Matematik (MATH587) Ders Detayları

Ders Adı: Uygulamalı Matematik
Kod: MATH587
Ön Koşul Ders(ler)i: Math 262 Adi Diferansiyel Denklemler
Amaç: Ders iki bölümden oluşmaktadır: Varyasyonlar Hesabı ve İntegral Denklemler. Birinci bölümde dersin amacı varyasyonlar hesabının temel kavramlarını sunmaktır. Bir ve iki bağımsız değişken içeren varyasyon problemleri üzerinde durulacak, sabit uç nokta problemi ile koşullu problemler detayları ile incelenecektir. Bu bölüm konuları arasında Euler-Lagrange denklemi, birinci ve ikinci varyasyonlar, ekstrema için gerek ve yeter koşullar, Hamilton prensibi ve Sturm-Liouville problemleri ile mekaniğe uygulamaları da yer alacaktır. İkinci bölümde dersin amacı öğrencilere integral denklemleri ve integral denklemlerin diferensiyal denklemler için tanımlanan sınır ve başlangıç değer problemleri ile bağlantısını tanıtmaktır. Bu bölümün başlıca konuları Fredholm ve Volterra integral denklemleri, Green fonksiyonu, Hilbert-Schimidt teorisi, Neumann serileri ve Fredholm teorisidir.
İçerik: Varyasyonlar Hesabı: Euler-Lagrange denklemi, birinci ve ikinci varyasyonlar, ekstrema için gerek ve yeter koşullar, Hamilton prensibi ve Sturm-Liouville problemlerine ve mekaniğe uygulamalar. İntegral Denklemler: Fredholm ve Volterra integral denklemleri, Green fonksiyonu, Hilbert-Schmidt teorisi, Neumann serisi ve Fredholm teorisi ve uygulamalar.
Dönemi: Güz
Teori: 3
Uygulama: 0
Laboratuar: 0
Kredi: 3
Web: http://www.atilim.edu.tr/~math587/
Ders Dosyası:
AKTS: 7.5